What is the sum of the infinite series 1/2 + 1/4 + 1/8 +? Is the sum equal to 2?

 What is the sum of the infinite series 1/2 + 1/4 + 1/8 +? Is the sum equal to 2?

πŸ‘‡πŸ‘‡πŸ‘‡πŸ»πŸ‘‡πŸΌπŸ‘‡πŸ½πŸ‘‡πŸΎπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏ


πŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸΏπŸ‘‡πŸ»πŸ‘‡πŸ»πŸ‘‡πŸ»πŸ‘‡πŸ»πŸ‘‡πŸ‘‡



The series you're describing is a geometric series with a common ratio of 1/2.

The sum of an infinite geometric series π‘Ž+π‘Žπ‘Ÿ+π‘Žπ‘Ÿ2+π‘Žπ‘Ÿ3+ where π‘Ÿ<1 is given by the formula:

Sum=π‘Ž1π‘Ÿ

In your series, π‘Ž=12 and π‘Ÿ=12. So, substituting into the formula:

Sum=12112=1212=1

The sum of the infinite series 12+14+18+ is indeed equal to 1, not 2. It converges to 1, not 2.


Post a Comment

Previous Post Next Post